首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3371篇
  免费   213篇
  国内免费   405篇
  2024年   4篇
  2023年   66篇
  2022年   70篇
  2021年   74篇
  2020年   99篇
  2019年   131篇
  2018年   119篇
  2017年   85篇
  2016年   112篇
  2015年   88篇
  2014年   207篇
  2013年   259篇
  2012年   163篇
  2011年   235篇
  2010年   165篇
  2009年   198篇
  2008年   243篇
  2007年   253篇
  2006年   164篇
  2005年   187篇
  2004年   136篇
  2003年   128篇
  2002年   118篇
  2001年   93篇
  2000年   73篇
  1999年   66篇
  1998年   37篇
  1997年   40篇
  1996年   30篇
  1995年   27篇
  1994年   45篇
  1993年   22篇
  1992年   25篇
  1991年   21篇
  1990年   21篇
  1989年   21篇
  1988年   14篇
  1987年   13篇
  1986年   18篇
  1985年   13篇
  1984年   18篇
  1983年   12篇
  1982年   18篇
  1981年   13篇
  1980年   9篇
  1979年   10篇
  1978年   7篇
  1977年   6篇
  1975年   5篇
  1974年   4篇
排序方式: 共有3989条查询结果,搜索用时 234 毫秒
111.
In the present study, we used a phage display technique to screen differentially expressed proteins from zebrafish post-gastrula embryos. With a subtractive screening approach, 6 types of single-chain Fv fragments (scFvs) were screened out from an scFv antibody phage display library by biopanning against zebrafish embryonic homogenate. Four scFv fragments (scFv1, scFv3, scFv4 and scFv6) showed significantly stronger binding to the tailbud embryos than to the 30%-epiboly embryos. A T7 phage display cDNA library was constructed from zebrafish tailbud embryos and used to identify the antigens potentially recognized by scFv1, which showed the highest frequency and strongest binding against the tailbud embryos. We acquired 4 candidate epitopes using scFv1 and the corresponding genes showed significantly higher expression levels at tailbud stage than at 30%-epiboly. The most potent epitope of scFv1 was the clone scFv1-2, which showed strong homology to zebrafish myristoylated alanine-rich C-kinase substrate b (Marcksb). Western blot analysis confirmed the high expression of marcksb in the post-gastrula embryos, and the endogenous expression of Marcksb was interfered by injection of scFv1. Zebrafish marcksb showed dynamic expression patterns during embryonic development. Knockdown of marcksb strongly affected gastrulation movements. Moreover, we revealed that zebrafish marcksb is required for cell membrane protrusion and F-actin alignment. Thus, our study uncovered 4 types of scFvs binding to zebrafish post-gastrula embryos, and the epitope of scFv1 was found to be required for normal gastrulation of zebrafish. To our knowledge, this was the first attempt to combine phage display technique with the embryonic and developmental study of vertebrates, and we were able to identify zebrafish marcksb that was required for gastrulation.  相似文献   
112.
Gallbladder carcinoma (GBC) is one of the mostly aggressive and fatal malignancies. However, little is known about the oncogenic genes that contributed to the development of GBC. Zinc finger X-chromosomal protein (ZFX) was a novel member of the Krueppel C2H2-type zinc-finger protein family and its down-regulation led to impaired cell growth in human laryngeal squamous cell carcinoma. Here, we aim to investigate the function of ZFX in GBC cell proliferation and migration. Loss of function analysis was performed on GBC cell line (GBC-SD) using lentivirus-mediated siRNA against ZFX. The proliferation, in vitro tumorigenesis (colony-formation) ability as well as cell migration was significantly suppressed after GBC-SD cells which were infected with ZFX-siRNA-expressing lentivirus (Lv-shZFX). Our finding suggested that ZFX promoted the growth and migration of GBC cells and could present a potential molecular target for gene therapy of GBC.  相似文献   
113.
DNA repair events have functional significance especially for genome stability. Although the DNA damage response within the whole genome has been extensively studied, the region-specific characteristics of nuclear sub-compartments such as the nucleolus or fragile sites have not been fully elucidated. Here, we show that the heterochromatin protein HP1 and PML protein recognize spontaneously occurring 53BP1- or γ-H2AX-positive DNA lesions throughout the genome. Moreover, 53BP1 nuclear bodies, which co-localize with PML bodies, also occur within the nucleoli compartments. Irradiation of the human osteosarcoma cell line U2OS with γ-rays increases the degree of co-localization between 53BP1 and PML bodies throughout the genome; however, the 53BP1 protein is less abundant in chromatin of ribosomal genes and fragile sites (FRA3B and FRA16D) in γ-irradiated cells. Most epigenomic marks on ribosomal genes and fragile sites are relatively stable in both non-irradiated and γ-irradiated cells. However, H3K4me2, H3K9me3, H3K27me3 and H3K79me1 were significantly changed in promoter and coding regions of ribosomal genes after exposure of cells to γ-rays. In fragile sites, γ-irradiation induces a decrease in H3K4me3, changes the levels of HP1β, and modifies the levels of H3K9 acetylation, while the level of H3K9me3 was relatively stable. In these studies, we confirm a specific DNA-damage response that differs between the ribosomal genes and fragile sites, which indicates the region-specificity of DNA repair.  相似文献   
114.
Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed uniformly throughout the cell, demonstrating that Cht1 signal peptide functioned. In addition, thanatin(S) and thanatin(S)-FLAG chemically synthesized have both in vitro antimicrobial activities against P. syringae pv. tomato and B. cinerea. So, thanatin(S) is an ideal candidate AMPs for the construction of transgenic crops endowed with a broad-spectrum resistance to phytopathogens and the strategy is feasible to link a signal peptide to the target gene.  相似文献   
115.
Rice Resistance to Planthoppers and Leafhoppers   总被引:3,自引:0,他引:3  
For over 50 years, host-plant resistance has been regarded as an efficient method to reduce yield losses to rice caused by delphacid and cicadelid hoppers. Already a number of resistant rice varieties have been developed and deployed throughout Asia. To date, over 70 hopper resistance genes have been identified in rice; however, less than 10 genes have been deliberately introduced to commercial rice varieties. Currently, due to recent brown planthopper (Nilaparvata lugens [Stål]) and whitebacked planthopper (Sogatella furcifera [Horvath]) outbreaks occurring at an unprecedented scale, researchers are working toward a second generation of resistant varieties using newly identified gene loci and applying new molecular breeding methods. This paper reviews advances in the identification of resistance genes and QTLs against hoppers in rice. It collates all published information on resistance loci and QTLs against the major rice planthoppers and leafhoppers and presents information on gene locations, genetic markers, differential varieties, and wild rice species as sources of resistance. The review indicates that, whereas progress in the identification of genes has been rapid, considerable tidying of the information is required, especially regarding gene nomenclature and resistance spectra. Furthermore, sound information on gene functioning is almost completely lacking. However, hopper responses to resistance mechanisms are likely to be similar because a single phenotyping technique has been applied by most national and international breeding programs during germplasm screening. The review classifies genes occurring at two chromosome regions associated with several identified resistance loci and highlights these (Chr4S: BphR-R and Chr12L: BphR-R) as general stress response regions. The review calls for a greater diversity of phenotyping methods to enhance the durability of resistant varieties developed using marker-aided selection and emphasizes a need to anticipate the development of virulent hopper populations in response to the field deployment of genes.  相似文献   
116.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
117.
Green rusts are mixed ferrous/ferric hydroxides that typically form under weakly acidic to alkaline conditions in suboxic environments. The recent identification of green rusts as products of the reduction of Fe(III) oxides and oxyhydroxides by Shewanella putrefaciens, a dissimilatory iron-reducing bacterium (DIRB), suggests that green rusts may play a role in the redox cycling of Fe in many aquatic and terrestrial environments. We examined the potential for green rust formation resulting from the bioreduction of lepidocrocite(γ -FeOOH) by a series of Shewanella species (S. alga BrY, S. amazonensis SB2B, S. baltica OS155, S. denitrificans OS217T, S. loihica PV-4, S. oneidensis MR-1, S. putrefaciens ATCC 8071, S. putrefaciens CN32, S. saccharophilia, and Shewanella sp. ANA-3). All Shewanella species, with the exception of S. denitrificans OS217T, were able to couple the oxidation of formate to the reduction of Fe(III) in lepidocrocite; however there were significant differences among species with respect to the rate and extent of Fe(II) production. Despite these differences, green rust was the only Fe(II)-bearing solid phase formed under our experimental conditions, as indicated by X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy. The formation of green rust by Shewanella species isolated from a wide range of habitats and possessing varied metabolic capabilities suggests that under favorable conditions biogenic green rusts may be formed by a diverse array of DIRB.  相似文献   
118.
The formation of hydroxysulphate green rust 2, a Fe(II-III) compound commonly found during corrosion processes of iron-based materials in seawater, has not yet been reported in bacterial cultures. Here we used Shewanella putrefaciens, a dissimilatory iron-reducing bacterium to anaerobically catalyze the transformation of a ferric oxyhydroxide, lepidocrocite (γ-FeOOH), into Fe(II) in the presence of various sulphate concentrations. Biotransformation assays of γ-FeOOH were performed with formate as the electron donor under a variety of concentrations. The results showed that the competitive formation of hydroxycarbonate green rust 1 (GR1(CO3 2?)) and hydroxysulphate green rust 2 (GR2(SO4 2 ?)) depended upon the relative ratio (R) of bicarbonate and sulphate concentrations. When R ≥ 0.17, GR1(CO3 2 ?) only was formed whereas when R < 0.17, a mixture of GR2(SO4 2 ?) and GR1(CO3 2 ?) was obtained. These results demonstrated that the hydroxysulphate GR2 can originate from the microbial reduction of γ-FeOOH and confirmed the preference for carbonate over sulphate during green rust precipitation. The solid phases were characterized by X-ray diffraction, transmission Mössbauer spectroscopy and scanning electron microscopy. Diffuse reflectance infrared Fourier transform spectroscopy confirmed the presence of intercalated carbonate and sulphate in green rust's structure. This study sheds light on the influence of dissimilatory iron-reducing bacteria on microbiologically influenced corrosion.  相似文献   
119.
Turgor regulation is the process by which walled organisms alter their internal osmotic potential to adapt to osmotic changes in the environment. Apart from a few studies on freshwater oomycetes, the ability of stramenopiles to turgor regulate has not been investigated. In this study, turgor regulation and growth were compared in two species of the stramenopile alga Vaucheria, Vaucheria erythrospora isolated from an estuarine habitat, and Vaucheria repens isolated from a freshwater habitat. Species were identified using their rbcL sequences and respective morphologies. Using a single cell pressure probe to directly measure turgor in Vaucheria after hyperosmotic shock, V. erythrospora was found to recover turgor after a larger shock than V. repens. Threshold shock values for this ability were >0.5 MPa for V. erythrospora and <0.5 MPa for V. repens. Recovery was more rapid in V. erythrospora than V. repens after comparable shocks. Turgor recovery in V. erythrospora was inhibited by Gd3+ and TEA, suggesting a role for mechanosensitive channels, nonselective cation channels, and K+ channels in the process. Growth studies showed that V. erythrospora was able to grow over a wider range of NaCl concentrations. These responses may underlie the ability of V. erythrospora to survive in an estuarine habitat and restrict V. repens to freshwater. The fact that both species can turgor regulate may indicate a fundamental difference between members of the Stramenopila, as research to date on oomycetes suggests they are unable to turgor regulate.  相似文献   
120.
Grasses very often form symbiotic associations with Neotyphodium/Epichloë endophytic fungi. These endophytes often allow the host grass to be protected from different pathogens. However, there is little known about the mechanisms of such endophyte influence on the host. Thus, the purpose of this research was to examine the effect of the N. lolii endophyte on the total production of phenolic compounds, VOCs emission and the resistance of three perennial ryegrass genotypes infected by pathogenic Fusarium poae. Analyses of total phenolics content were performed in control (not inoculated) and inoculated plants after 1, 2, 3, 4, 5, and 6 days (DAI) and for VOCs after 0, 3, 6 and 12 DAI. The presence of endophytes significantly reduced the disease index in two of the three genotypes relative to that in E−. Plants infected by N. lolii exhibited higher production of phenolics relative to the E− plants. The highest amounts of phenolics were observed on the second and sixth DAI. Genotype Nl22 showed the strongest effect of the endophyte on the production of phenolics, which increased by over 61%. Both the endophyte infected and non-infected plants emitted most abundantly two GLVs ((Z)-3-hexenal, (Z)-3-hexen-1-yl acetate), three terpenes (linalool, (Z)-ocimene, β-caryophyllene) and three shikimic acid pathway derivatives (benzyl acetate, indole, and methyl salicylate). The endophyte presence and the intervals of VOCs detection were a highly significant source of variation for all emitted volatiles (P < 0.001). The genotype of the perennial ryegrass significantly affected only the emission of methyl salicylate (P < 0.05) and β-caryophyllene (P < 0.05). Most of the VOCs ((Z)-3-hexen-1-yl acetate, (Z)-3-hexenal, linalool and methyl salicylate) reached their highest levels of emission on the sixth DAI, when averaged over genotypes and endophyte status. The results highlight the role of Neotyphodium spp. in the mediation of quadro-trophic interactions among plants, symbiotic endophytes, invertebrate herbivores and plant pathogenic fungi. Our results also confirm the fact that symbiotic plants can activate a defense reaction faster than non-symbiotic plants after a pathogen attack. Thus, N. lolii can be involved in the defense of perennial ryegrass against pathogens and potentially could be central to the host plants’ protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号